Identifying A Correlate of Protection for COVID-19

Dean Follmann

National Institute of Allergy and Infectious Disease

Outline

- Operation Warp Speed
- What/Why of correlates
- Pseudo-Virus neutralization assay
- Illustration and issues with correlates of risk and protection
- Analysis of the Moderna Phase III clinical trial

Operation Warp Speed Overview

- Five randomized, placebo-controlled phase 3 vaccine efficacy trials
- A key objective is harmonized evaluation of immune correlates of protection for the 5 trials

		Candidate COVID-19	vaccines	
Plat	form 1 Platfor	m 2 Platform 3	Platform 4	Platform 5
		V		
	Proposed	government-support	ed infrastructure	
Harmonized efficacy trials	Collaborating clinical trials networks	 Collaborating labs Defining COVID-19 infections from vaccing Quantitative immune responses to spike and spike epitopes T cell responses 	Board	Between-tria statistical groups for correlates of protection
CARY/SO	DIENCE			

<u>CoVPN Statistical Group</u> NIAID Biostatistics Fred Hutch and UW Biostatistics, Colleagues at other departments (e.g., UW Statistics, Emory Biostatistics)

Corey, Mascola, Fauci, Collins. Science (2020)

Correlates for COVID-19: Ecosystem

- Correlates analysis central tenet of USG trials
 - Common assays, endpoints, analysis
- Goal: antibody for immuno-bridging
- Large open access collaboration
 - Synergy & uptake
- Refined/developed new methods

USG COVID-19 Response Team / CoVPN Vaccine Efficacy Trial Immune Correlates Statistical Analysis Plan

USG COVID-19 Response Team / Coronavirus Prevention Network (CoVPN) Biostatistics Team

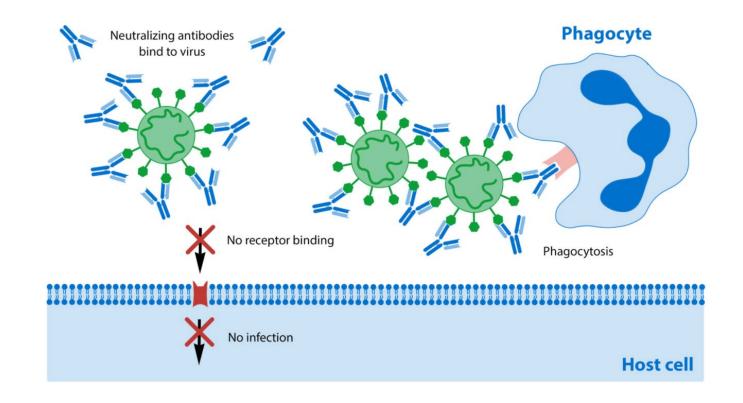
Peter B. Gilbert^{1,2*}, Youyi Fong^{1,2}, David Benkeser³, Jessica Andriesen¹, Bhavesh Borate¹, Marco Carone², Lindsay N. Carpp¹, Iván Díaz⁴, Michael P. Fay⁵, Andrew Fiore-Gartland¹, Nima S. Hejazi⁶, Ying Huang^{1,2}, Yunda Huang¹, Ollivier Hyrien¹, Holly E. Janes^{1,2}, Michal Juraska¹, Kendrick Li², Alex Luedtke⁷, Martha Nason⁵, April K. Randhawa¹, Lars van der Laan⁶, Brian D. Williamson¹, Wenbo Zhang², Dean Follmann⁵

CoVPN Biostatistics Immune Correlates SAP and Open-Source Implementation

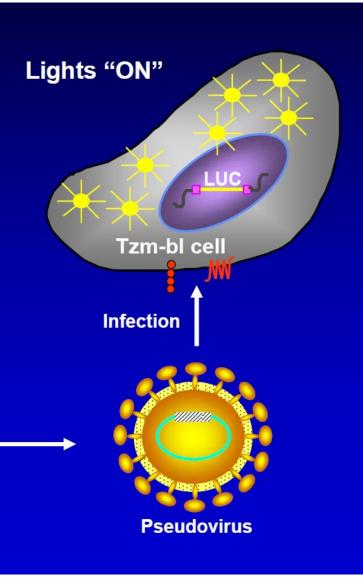
- Developed a Statistical Analysis Plan for immune correlates assessment for a prototype phase 3 trial, publicly posted at Figshare with version-controlled updates https://figshare.com/articles/online_resource/CoVPN_COVID-19_Vaccine_Efficacy_Trial_Immune_Correlates_SAP/13198595
- SAP implemented with R code on Github

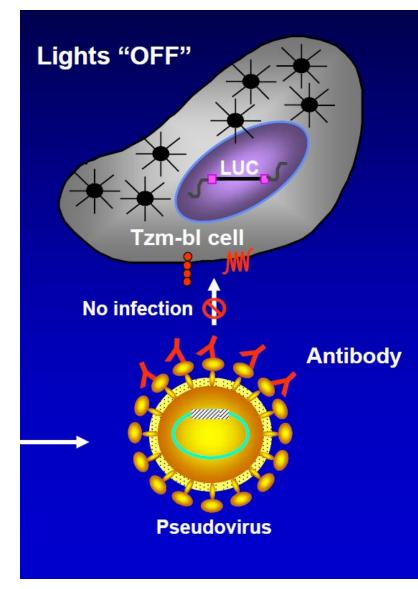
CoVPN / correlates_reporting Public	Û L
<> Code Issues 4 Pull requests 2 Actions Projects 	🛱 Wiki 😲 Security 🗠 Insights
양 gh-pages → 양 6 branches ♡ 1 tag	Go to file Code -
benkeser Update reports via fab976f.	✓ 8591163 11 hours ago 50 601 commits
Covpn_correlates_cop_moderna_moc Update reports via 8103d24.	3 months ago
Covpn_correlates_cor_janssen_poole Update reports via fab976f.	11 hours ago
C covpn_correlates_cor_moderna_moc Update reports via fab976f.	12 hours ago
Covpn_correlates_immuno_janssen_p Update reports via fab976f.	12 hours ago
Covpn_correlates_immuno_moderna Update reports via fab976f.	12 hours ago
Covpn_correlates_riskscore_janssen_p Update reports via fab976f.	11 hours ago

What are Correlates?


- Correlate of Risk : An immune marker that is statistically related to an efficacy endpoint
 - Those with higher influenza antibody titers have lower *Risk of Disease*
 - Don't need a control group to assess
- Correlate of Protection: An immune marker that is statistically related to vaccine efficacy
 - Those with higher influenza antibody titers have higher Vaccine Efficacy
 - Do need a control group to assess

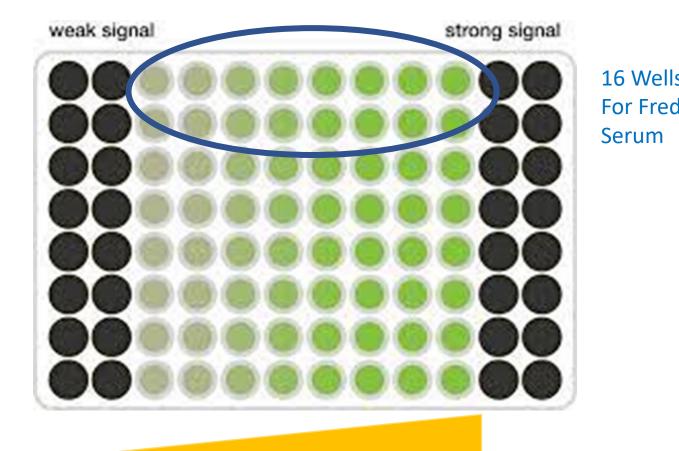
Why Correlates of Protection?


- Understanding of mechanism
- Assess potency of new lots of vaccines
- Bridge to other groups, e.g. kids
- Evaluate variants of concern in the test tube *is vaccine likely to work*?
- Assess impact of modified vaccines with variant inserts
- Possible trigger for boosting
- License modified or totally new vaccines with small immunogenicity studies


Neutralizing Antibodies

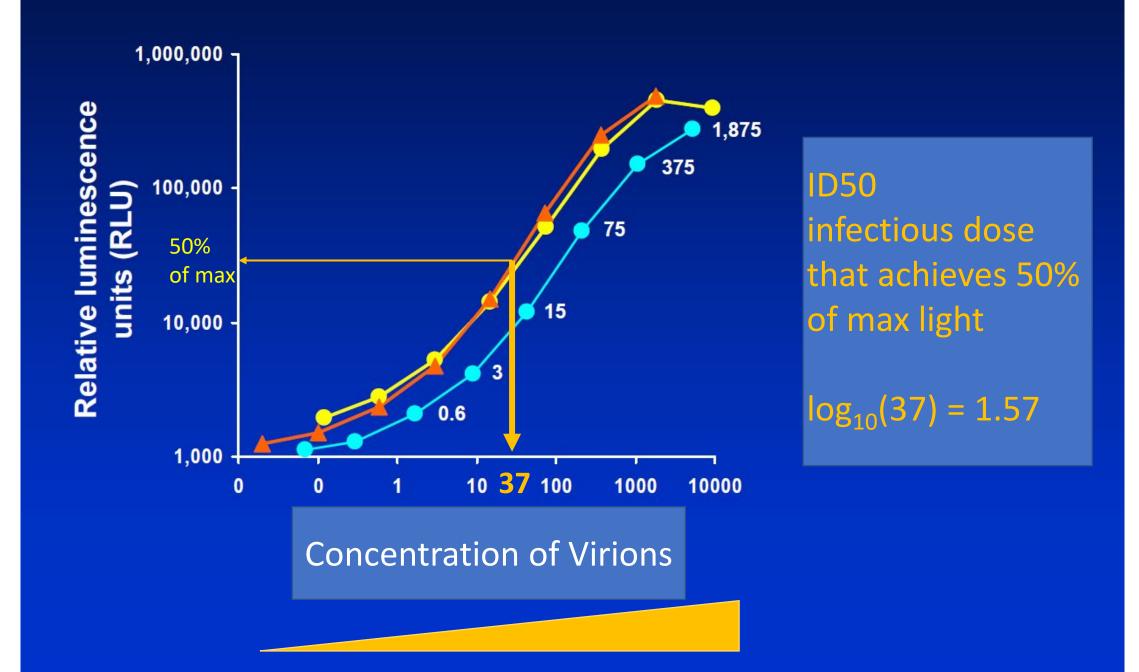
- Vaccines induce immune system to make antibodies to parts SARS-CoV-2 and other things too
- Antibodies block/thwart SARS-CoV-2 from infecting cells

How the Pseudo-Virus Neutralization Assay works


In each well a cage fight

Mix infectable cells person's serum w/antibodies pseudo-virus

Lights out=> antibody wins!


Pseudo-Virus neutralization assay in a 96-well plate

- Put infectable cells in well
- Fill up 16 wells with serum/antibody from a person
- Put in different concentrations of virus
- Record light intensity

Less virus

More virus

Correlates of Risk Analysis

antibody	# Vaccinees	# Infections	P(Disease)
10	100	20	0.20
100	800	80	0.10
1000	100	5	0.05

Risk is 4-fold larger for antibody at 10 vs 1000 Something's going on

Naïve Correlates of Protection Analysis

antibody	# Vaccinees	# Infections	P(Disease)	Vaccine Efficacy
10	100	20	0.20	0.500
100	800	80	0.10	0.750
1000	100	5	0.05	0.875

Suppose: Placebo Group attack Rate 40% Vaccine Efficacy at antibody =10 is $100\% \times (1 - \frac{0.20}{0.40}) = 0.50$

Confounding And A Fix

Young: Good Immune Response Low Risk

Antibody	# Vaccinees	# Infections	P(Disease)
10	20	2	0.10
100	400	20	0.05
1000	80	3	0.04

Make a trial with 50:50 young & old at each Ab level

Adjusted
0.165
0.100
0.070

Now antibody doesn't depend on age

Old:	Bad	Immune	Response	High Risk
------	-----	--------	----------	-----------

Antibody	# Vaccinees	# Infections	P(Disease)
10	80	18	0.23
100	400	60	0.15
1000	20	2	0.10

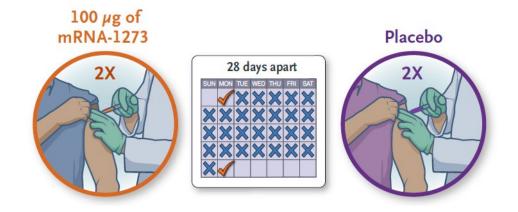
Proper Correlates of Protection

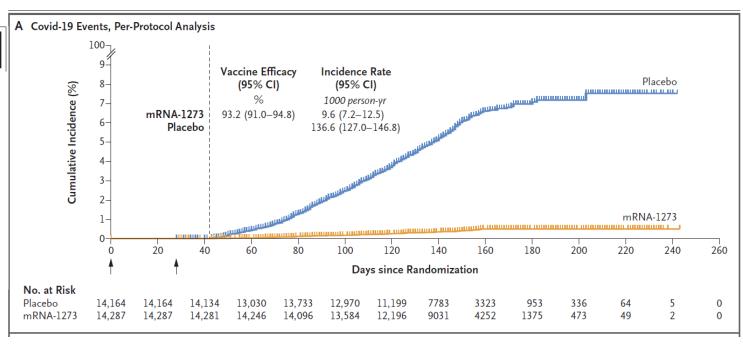
antibody	# Vaccinees	# Infections	Adjusted P(disease)*	Vaccine Efficacy
10	100	20	0.165	0.59
100	800	80	0.100	0.75
1000	100	5	0.070	0.83

Suppose: Placebo Group attack Rate 40% Predicted Vaccine Efficacy at Antibody = 10 is $100\% \times (1 - \frac{0.165}{0.40}) = 0.59$

*- Disease rate for a trial with equal young and old at each Ab level Like randomizing 1000 to vaccine and then 3 levels of antibody 1:8:1

Correlate of Protection Summary


- Antibody level is not randomized so use statistical methods for observational data
- Assume we measure all factors (age, sex, etc) that predict both antibody level and risk of disease
- Statistically create a trial where we randomize to placebo or vaccine then randomize to levels of antibody
- VE of 0.83 at ID50 = 1000 is caused by the 'intervention'
 - Intervention = antibody at 1000 plus other vaccinal effects

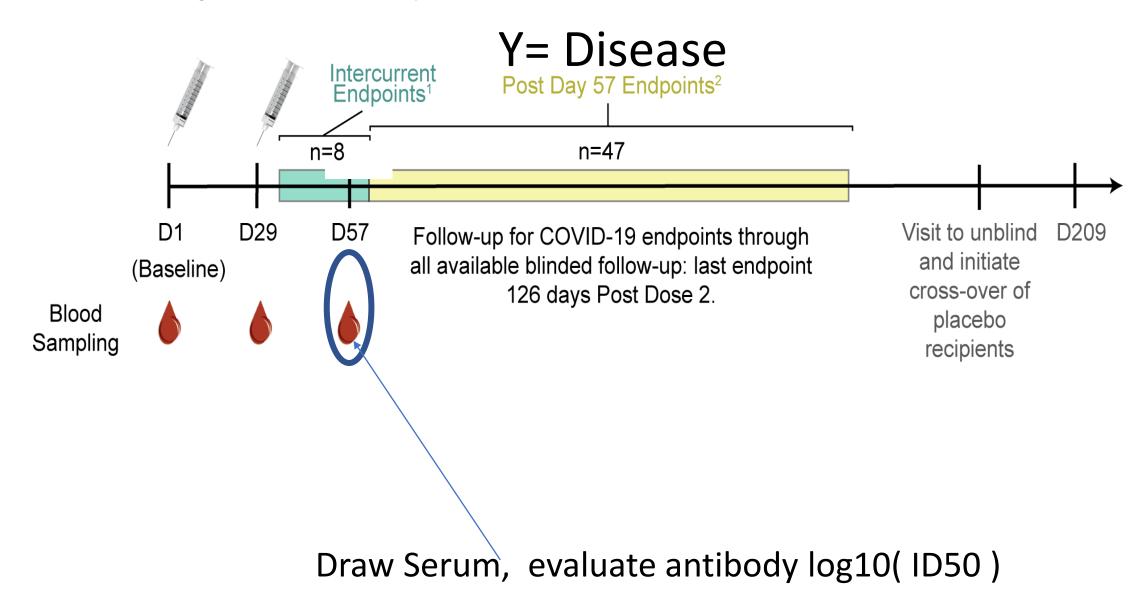

ORIGINAL ARTICLE

Efficacy of the mRNA-1273 SARS-CoV-2 Vaccine at Completion of Blinded Phase

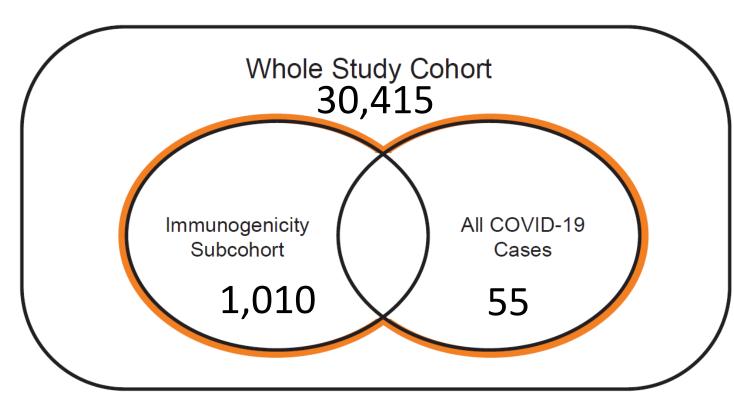
H.M. El Sahly, L.R. Baden, B. Essink, S. Doblecki-Lewis, J.M. Martin,
E.J. Anderson, T.B. Campbell, J. Clark, L.A. Jackson, C.J. Fichtenbaum,
M. Zervos, B. Rankin, F. Eder, G. Feldman, C. Kennelly, L. Han-Conrad,
M. Levin, K.M. Neuzil, L. Corey, P. Gilbert, H. Janes, D. Follmann,
M. Marovich, L. Polakowski, J.R. Mascola, J.E. Ledgerwood, B.S. Graham,
A. August, H. Clouting, W. Deng, S. Han, B. Leav, D. Manzo, R. Pajon,
F. Schödel, J.E. Tomassini, H. Zhou, and J. Miller, for the COVE Study Group*

N=30,415 participants enrolled July 27, 2020 to October 23, 2020

Primary endpoint is COVID-19:


First occurrence of symptomatic COVID-19 with virologically-confirmed SARS-CoV-2 infection in participants with no evidence of previous SARS-CoV-2 infection

Per-protocol cohort analysis VE = 93.2% (95% CI 91.0 to 94.8%)


Median Follow-up 5.3 months

Measure antibody and disease

For Baseline Negative Per-Protocol recipients of two doses of mRNA-1273:

Measure Antibody in all Cases and Some non-cases

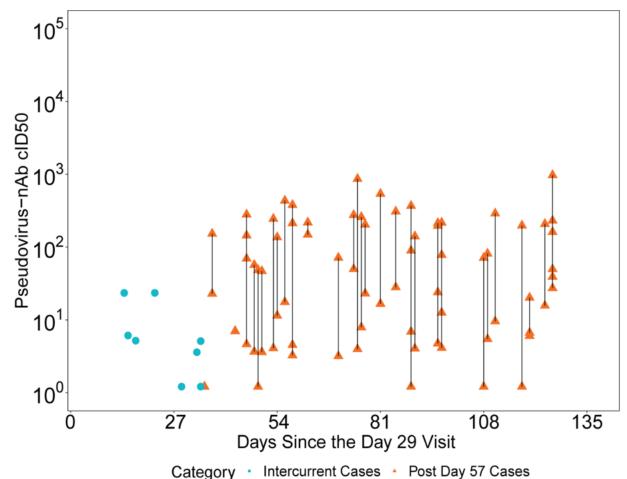
 Sampling stratified by baseline covariates (Vaccine, Placebo)
 x (SARS-CoV-2 Neg, Pos)
 x (Baseline demographics)

Case-cohort set = Immunogenicity subcohort plus COVID-19 cases outside the subcohort, excluding participants with missing antibody marker data.

- Immune correlates analyses in the per-protocol baseline negative cohort
 - Per-protocol = received both doses without major protocol violations

Per-Protocol Baseline Negative Vaccine Recipients in the Immunogenicity Subcohort by Randomization Strata and Demographics (N=1010)

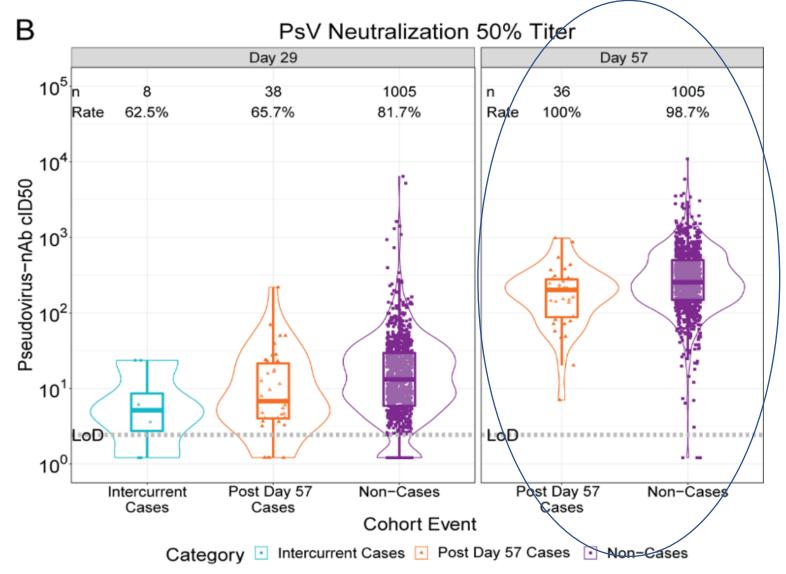
12 (1%)


Characteristic	Number (%)	Characteristic	Number (%)
Age < 65	670 (67%)	Hispanic or Latino	322 (32%)
Age >= 65	340 (34%)	Not Hispanic or Latino	685 (68%)
At-Risk	396 (39%)	White Non-Hispanic	465 (46%)
Not At-Risk	614 (61%)	Communities of Color	545 (54%)
		Black or African American	182 (18%)
Female	476 (47%)	Asian	25 (2%)
Male	534 (53%)	American Indian or Alaska Native	17 (2%)
		Native Hawaiian or Other	5 (0.5%)

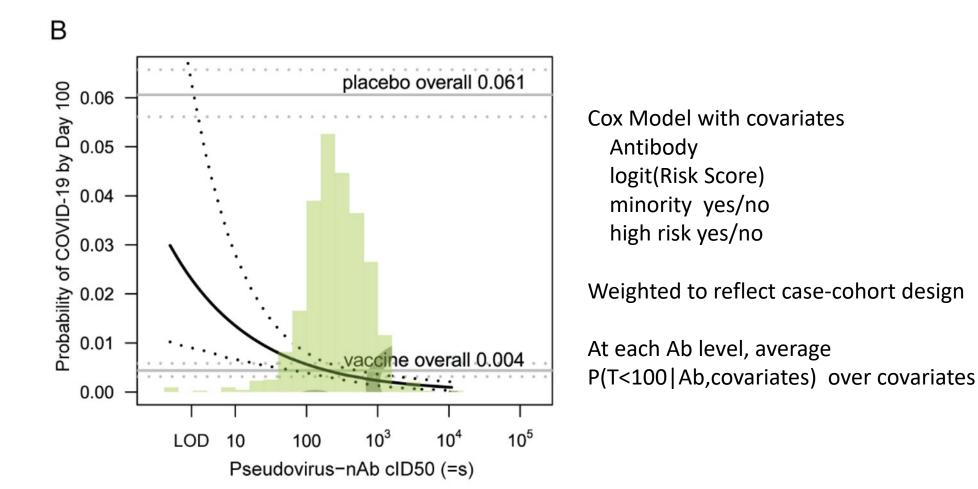
Pacific Islander

Multiracial

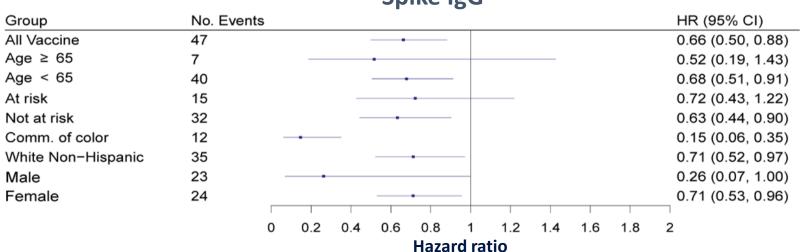
Antibody and timing of vaccine breakthroughs


Timing of Vaccine Breakthrough Cases in the Correlates Analysis

Upper triangle: Day 57 ID50 titer


Lower triangle: Day 29 ID50 titer

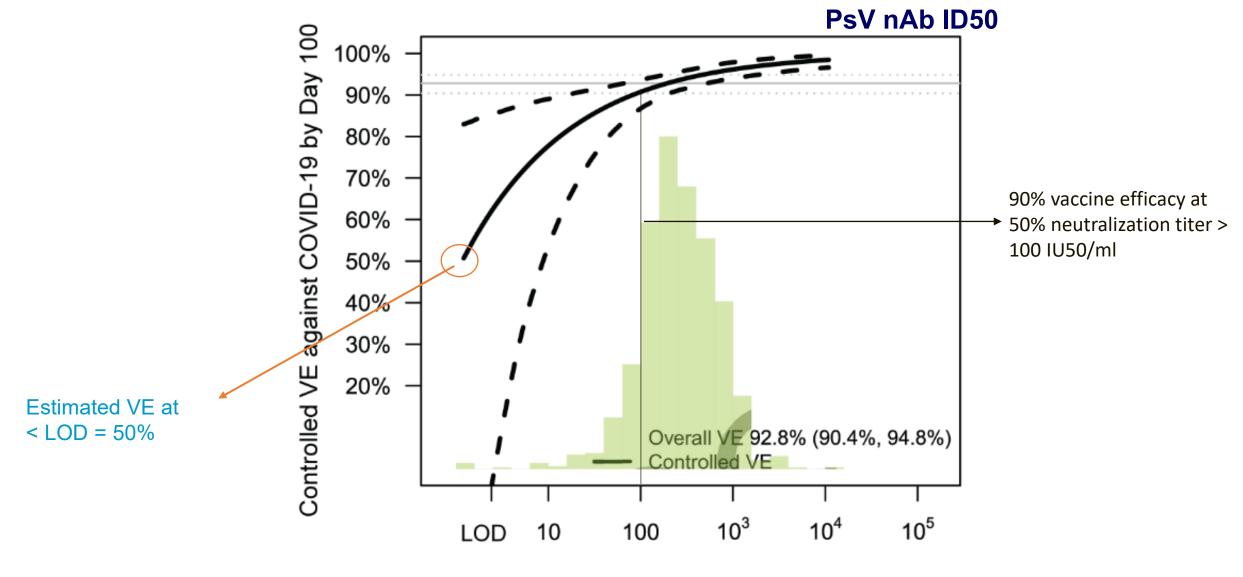
Antibody Levels Lower in Vaccine Breakthrough Casi



Correlate of Risk Curve

Risk by ID50: Varies from 0.030 at undetectable to 0.0009 at titer 10,000 (33x)

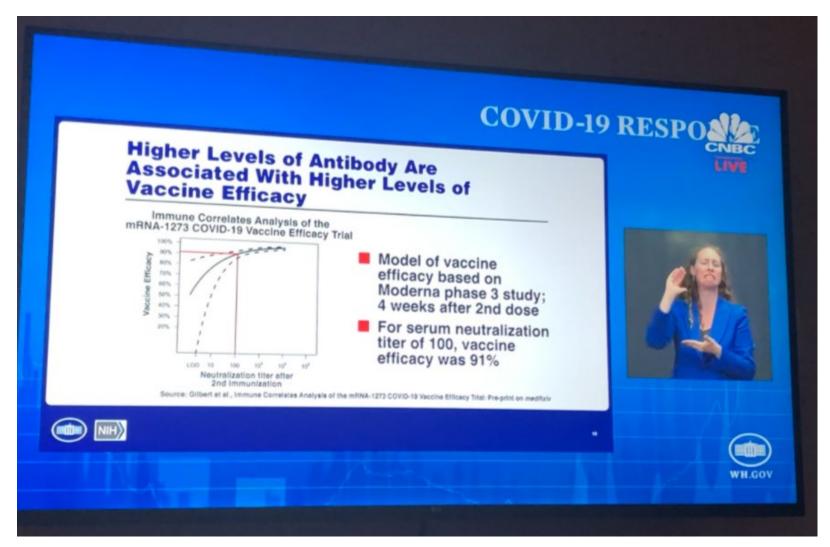
Day 57 Correlates of Risk By Subgroups



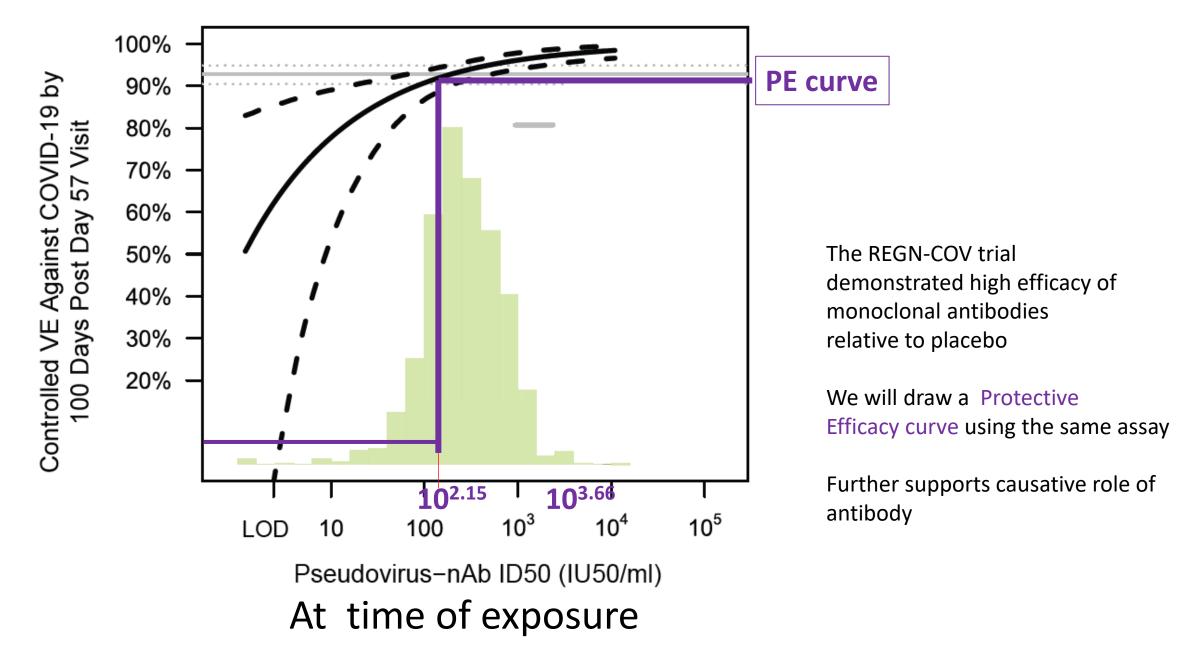
Spike IgG

PsV nAb ID50

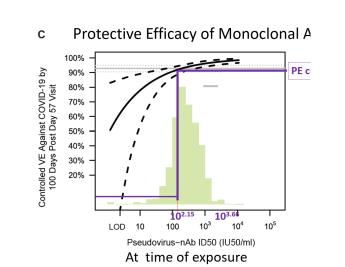
Group	No. Events		HR (95% CI)
All Vaccine	47		0.42 (0.27, 0.65)
Age ≥ 65	7		0.34 (0.10, 1.12)
Age < 65	40		0.42 (0.26, 0.69)
At risk	15		0.53 (0.28, 1.02)
Not at risk	32		0.32 (0.17, 0.62)
Comm. of color	12		0.45 (0.12, 1.65)
White Non-Hispanic	35	-	0.40 (0.24, 0.67)
Male	23	-	0.23 (0.10, 0.54)
Female	24	•	0.57 (0.31, 1.05)
	0	0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1	.8 2
		Hazard ratio 1000 ID50 versus 100 ID50	

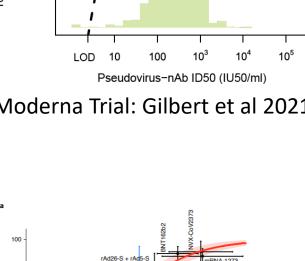

Correlate of Protection Curve

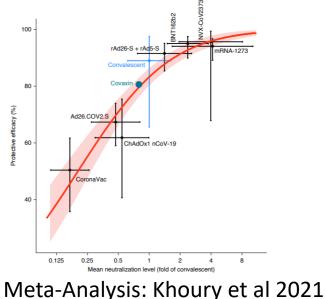
Pseudovirus-nAbcID50 (=s)

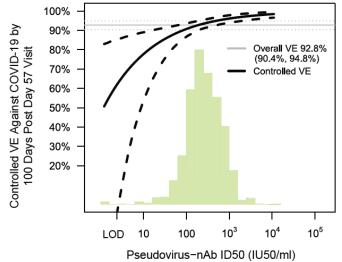

*Gilbert, Fong, Carone (2021, *arXiv*)

CoP Curve on TV


18 August 2021 7:34 pm Briefing to Outline Rationale for a Booster Dose


c Protective Efficacy of Monoclonal Antibodies




Correlates of Protection: COVID-19

- Diverse streams of evidence support a causal role of
 - Individual Trials
 - Similarity of curves across platforms
 - Protection by passive immunization
 - Animal Studies
 - Meta-analysis

Moderna Trial: Gilbert et al 2021

Decision

Access Consortium: Alignment with ICMRA consensus on immunobridging for authorising new COVID-19 vaccines

Published 15 September 2021

The Access Consortium considers that the weight of evidence from studies with authorised COVID-19 vaccines is sufficient to support using neutralising antibody titres as a primary endpoint **in cross-platform immunobridging** trials.

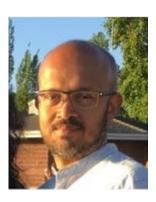
https://www.gov.uk/government/publications/access-consortium-alignment-with-icmra-consensus-on-immunobridging-for-authorising-new-covid-19-vaccines/access-consortium-alignment-with-icmra-consensus-on-immunobridging-for-authorising-new-covid-19-vaccines/access-consortium-alignment-with-icmra-consensus-on-immunobridging-for-authorising-new-covid-19-vaccines/access-consortium-alignment-with-icmra-consensus-on-immunobridging-for-authorising-new-covid-19-vaccines/access-consortium-alignment-with-icmra-consensus-on-immunobridging-for-authorising-new-covid-19-vaccines/access-consortium-alignment-with-icmra-consensus-on-immunobridging-for-authorising-new-covid-19-vaccines/access-consortium-alignment-with-icmra-consensus-on-immunobridging-for-authorising-new-covid-19-vaccines/access-consortium-alignment-with-icmra-consensus-on-immunobridging-for-authorising-new-covid-19-vaccines/access-consortium-alignment-with-icmra-consensus-on-immunobridging-for-authorising-new-covid-19-vaccines/access-consortium-alignment-with-icmra-consensus-on-immunobridging-for-authorising-new-covid-19-vaccines/access-consortium-alignment-with-icmra-consensus-on-immunobridging-for-authorising-new-covid-19-vaccines/access-consortium-alignment-with-icmra-consensus-on-immunobridging-for-authorising-new-covid-19-vaccines/access-consortium-alignment-with-icmra-consensus-on-immunobridging-for-authorising-new-covid-19-vaccines/access-consortium-alignment-with-icmra-consensus-on-immunobridging-for-authorising-new-covid-19-vaccines/access-consortium-alignment-with-icmra-consensus-on-immunobridging-for-authorising-new-covid-19-vaccines/access-consortium-alignment-with-icmra-consensus-on-immunobridging-for-authorising-new-covid-19-vaccines/access-consortium-alignment-with-icmra-consensus-on-immunobridging-for-authorising-new-covid-19-vaccines/access-consortium-alignment-with-icmra-consensus-on-immunobridging-for-authorising-new-covid-19-vaccess-consensus-on-immunobridging-for-authorising-new-covid-19-vaccess-consensus-on-immunobridging-for-authorising-new-c

What's Next?

- Do similar analyses for all OWS vaccine trials
- Combine analyses over all OWS vaccine trials
- Correlates for Delta and Omicron infections
- Perform risk proximal correlates
 - Correlate day 87 antibody with day 87 risk, etc
- Use mAb prevention trial data for improved mediation analysis

Peter Gilbert Leadership, Advice, Support and many slides

Science


RESEARCH ARTICLES

Cite as: P. B. Gilbert *et al.*, *Science* 10.1126/science.abm3425 (2021).

Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy clinical trial

Peter B. Gilbert^{1,2,3*+}, David C. Montefiori⁴⁺, Adrian B. McDermott⁵⁺, Youyi Fong^{1,2}, David Benkeser⁶, Weiping Deng⁷, Honghong Zhou⁷, Christopher R. Houchens⁸, Karen Martins⁸, Lakshmi Jayashankar⁸, Flora Castellino⁸, Britta Flach⁵, Bob C. Lin⁵, Sarah O'Connell⁵, Charlene McDanal⁴, Amanda Eaton⁴, Marcella Sarzotti-Kelsoe⁴, Yiwen Lu¹, Chenchen Yu¹, Bhavesh Borate¹, Lars W. P. van der Laan¹, Nima S. Hejazi^{1,9}, Chuong Huynh⁸, Jacqueline Miller⁷, Hana M. El Sahly¹⁰, Lindsey R. Baden¹¹, Mira Baron¹², Luis De La Cruz¹³, Cynthia Gay¹⁴, Spyros Kalams¹⁵, Colleen F. Kelley¹⁶, Michele P. Andrasik¹, James G. Kublin¹, Lawrence Corey^{1,17}, Kathleen M. Neuzil¹⁸, Lindsay N. Carpp¹, Rolando Pajon⁷, Dean Follmann¹⁹, Ruben O. Donis⁸‡, Richard A. Koup⁵‡, on behalf of the Immune Assays Team§, Moderna, Inc. Team§, Coronavirus Vaccine Prevention Network

Youyi

David

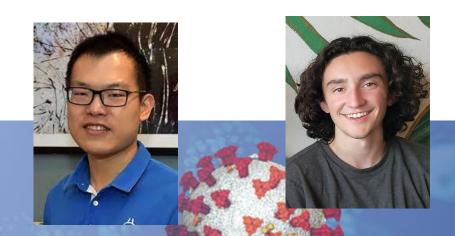
Kendrick Li

• Yiwen Lu

• Brian Simpkins

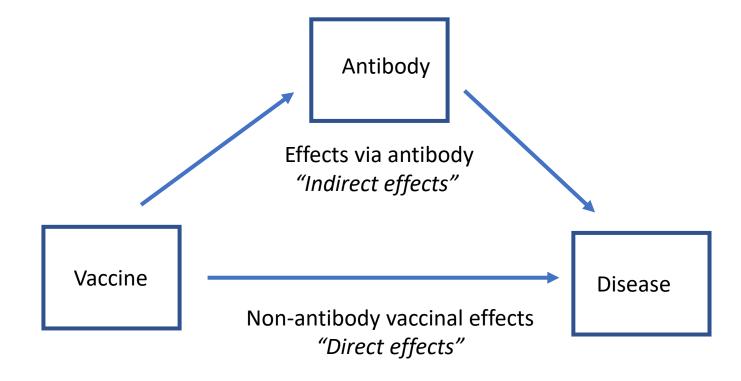
• Lars van der Laan

• Chenchen Yu


• Di Lu

USG / CoVPN Biostatistics Implementation Team

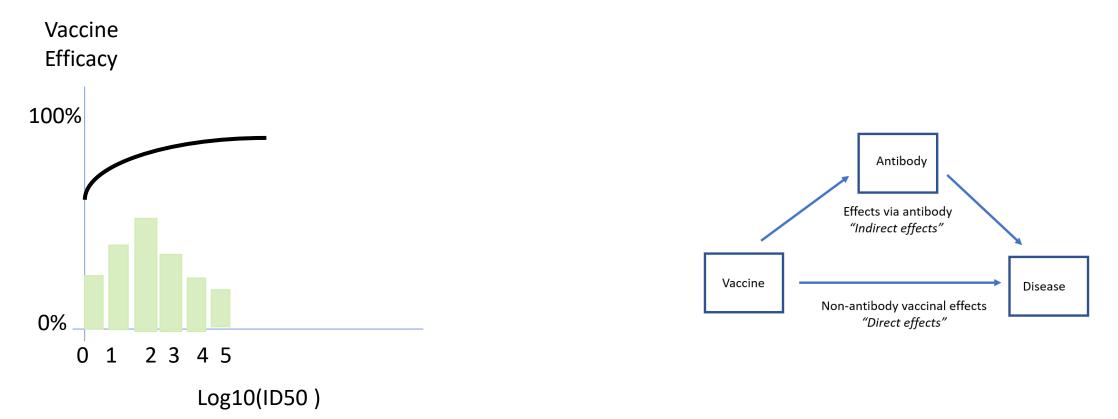
- David Benkeser
- Bhavesh Borate
- Youyi Fong
- Peter Gilbert
- Nima Hejazi
- Ellis Hughes

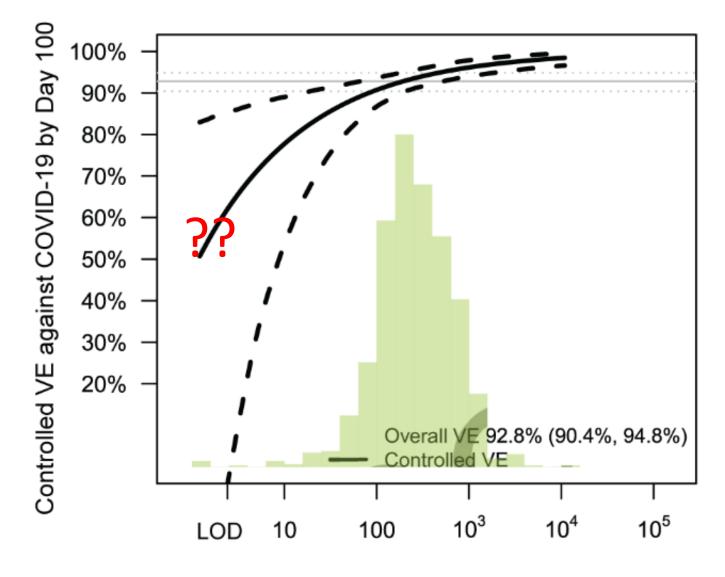


Statistical Details for Correlates Model

- Correlates of Risk Model: Cox regression in the vaccine group alone
 - Specify h(t) = h0(t) exp{ B1 Ab + B2 X }
 - X logit(risk score), minority, high risk
 - t is days post peak
 - Fit using weighted Cox regression
 - Get P(T<t | Ab, X) from Cox output
 - Average over empirical dbn of X to get P(T<100 days|A=1,Ab)
- Correlates of Protection: Above plus the placebo event rate
 - Use P(T<t|Ab) from the above
 - Form 1 P(T<100 days | A=1,Ab)/ P(T<100 days | A=0)
 - A=1 vaccine A=0 placebo

How *much* does antibody contribute to protection?


Example 1: Antibody has no effect


Example 2: Antibody has the entire effect

Example 3: It's complicated

It's impossible

Pseudovirus-nAbcID50 (=s)

Crude Mediation Analysis Day 29 ID80 Marker

- VE with no antibody is about 75% = $(1 1/4) \times 100\%$
- Overall VE is about $95\% = (1 1/20) \times 100\%$
- Fold reduction in risk is

$$\begin{array}{rcl}
20 & = & 4 & x & 5 \\
5^{1.86} & = & 5^{0.86} & x & 5^{1.00}
\end{array}$$

Total reduction = not via antibody x via antibody

• Crude proportion mediated is

$$100\% \ \frac{1.00}{1.86} = 54\%$$

	Point Estimates (95% Confidence Intervals)							
			Direct VE Indirect VE		Proportion Mediated			
	Day 29 nAb II	D50	56.0% (<u>42-2, 66.5%</u>)	83.2% (76.0, 87.8%)	68.5% (58.5, 78.4%)			
	Day 29 nAb ID80		73.9% (60.1, 82.9%)	71.7% (59.7 <i>,</i> 80.1%)	48.5% (34.5, 62.4%)			
	Direct VE:VE comparing vaccine vs. placebo with marker set to undetectableIndirect VE:VE in vaccinated at observed marker vs. at marker deactivated to be undetectable							

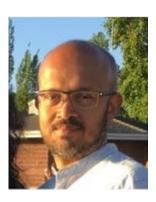
Prop. Mediated: Fraction of total risk reduction from vaccine attributed to the marker

• Interpretation of nAb ID50 titer result: If circulating neutralizing antibodies at Day 29 could be removed but the other consequences of vaccination remained, overall VE would be expected to reduce by 68.5% from 92.3% to 56.0% (on the log scale)

*TMLE method of Benkeser, Diaz, Ran (2021, arXiv)

Peter Gilbert Leadership, Advice, Support and many slides

Science


RESEARCH ARTICLES

Cite as: P. B. Gilbert *et al.*, *Science* 10.1126/science.abm3425 (2021).

Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy clinical trial

Peter B. Gilbert^{1,2,3*+}, David C. Montefiori⁴⁺, Adrian B. McDermott⁵⁺, Youyi Fong^{1,2}, David Benkeser⁶, Weiping Deng⁷, Honghong Zhou⁷, Christopher R. Houchens⁸, Karen Martins⁸, Lakshmi Jayashankar⁸, Flora Castellino⁸, Britta Flach⁵, Bob C. Lin⁵, Sarah O'Connell⁵, Charlene McDanal⁴, Amanda Eaton⁴, Marcella Sarzotti-Kelsoe⁴, Yiwen Lu¹, Chenchen Yu¹, Bhavesh Borate¹, Lars W. P. van der Laan¹, Nima S. Hejazi^{1,9}, Chuong Huynh⁸, Jacqueline Miller⁷, Hana M. El Sahly¹⁰, Lindsey R. Baden¹¹, Mira Baron¹², Luis De La Cruz¹³, Cynthia Gay¹⁴, Spyros Kalams¹⁵, Colleen F. Kelley¹⁶, Michele P. Andrasik¹, James G. Kublin¹, Lawrence Corey^{1,17}, Kathleen M. Neuzil¹⁸, Lindsay N. Carpp¹, Rolando Pajon⁷, Dean Follmann¹⁹, Ruben O. Donis⁸‡, Richard A. Koup⁵‡, on behalf of the Immune Assays Team§, Moderna, Inc. Team§, Coronavirus Vaccine Prevention Network

Youyi

David

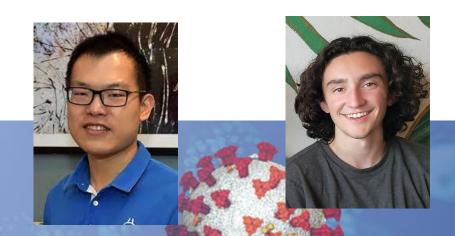
Kendrick Li

• Yiwen Lu

• Brian Simpkins

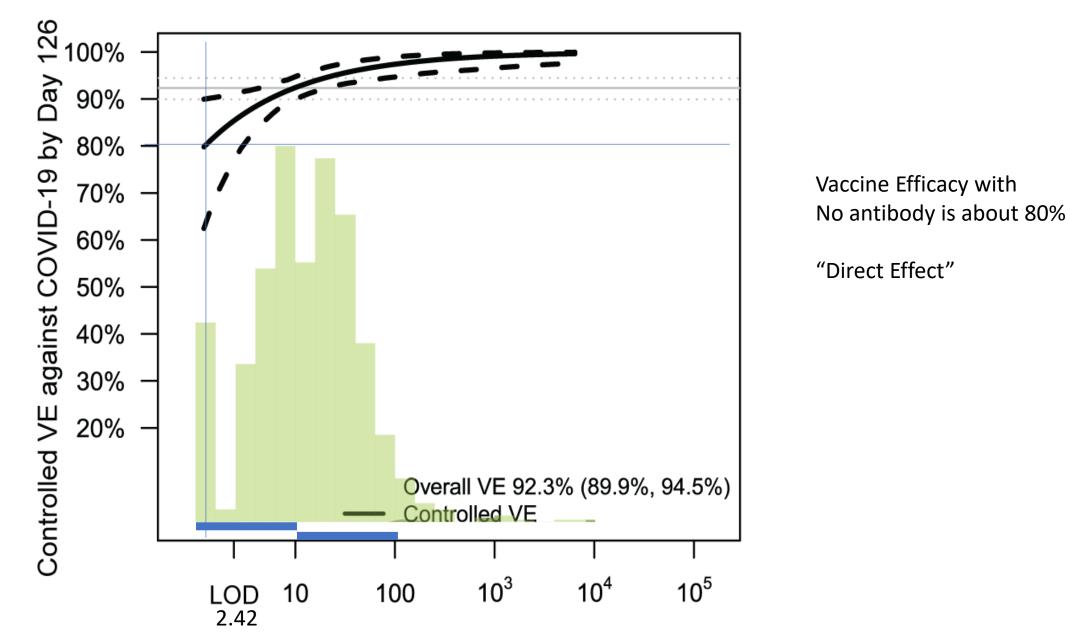
• Lars van der Laan

• Chenchen Yu


• Di Lu

USG / CoVPN Biostatistics Implementation Team

- David Benkeser
- Bhavesh Borate
- Youyi Fong
- Peter Gilbert
- Nima Hejazi
- Ellis Hughes



BACKUP SLIDES

Crude Mediation Analysis of D29 ID50 antibody

- VE with no antibody is about $80\% = (1 1/5) \times 100\%$
- Overall VE is about $95\% = (1 1/20) \times 100\%$
- Fold reduction in risk is

20 =	5	Х	4
$4^{2.16}$ =	4 ^{1.16}	x	4 ¹

Total reduction = not via antibody x via antibody

• Crude proportion mediated is

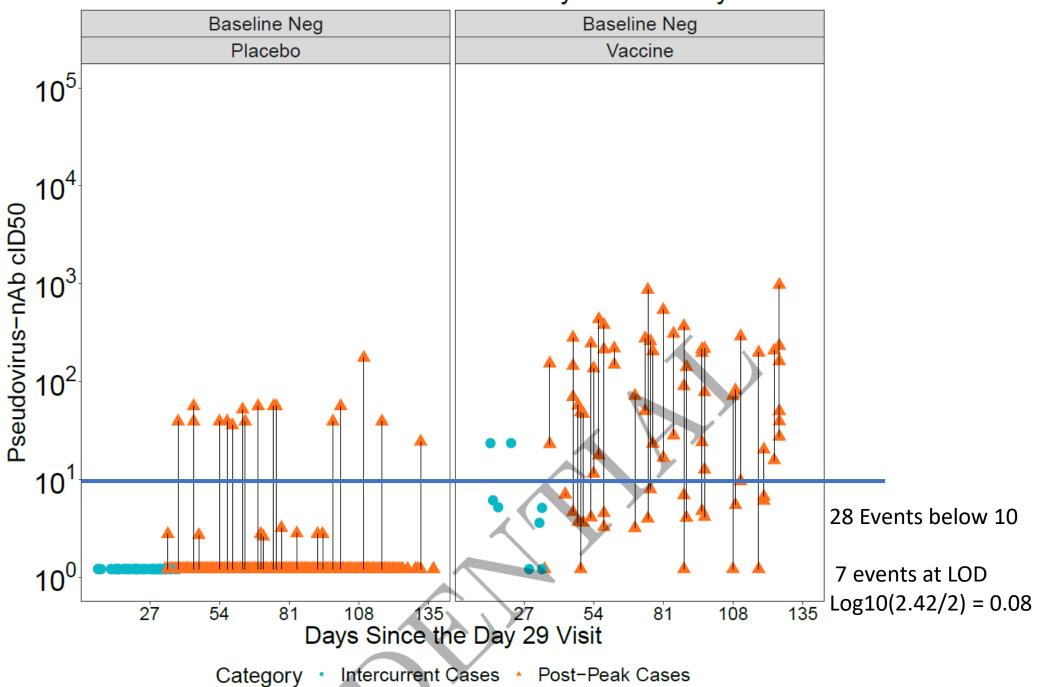

100% (1/2.16) = 46%

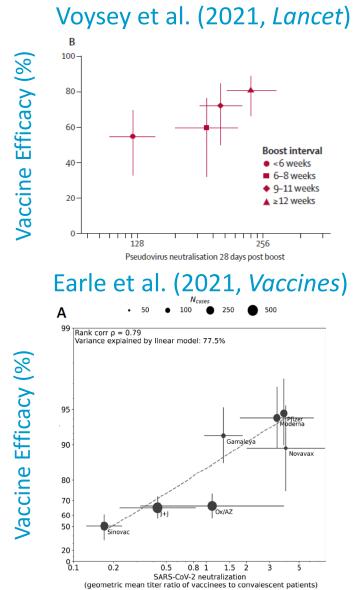
Table S8. Sensitivity analysis to assess Day 57 and Day 29 antibody markers categorized as upper vs. lower tertiles as controlled vaccine efficacy CoPs against COVID-19

-	Marginalized Risk Ratio RR _M (0,1) ¹		Controlled Risk Ratio = $(1-CVE(1))/(1-CVE(0))^2$		E-values ³	
Antibody Marker	Point Est.	95% CI	Point Est.	95% CI	For Point Est.	For 95% CI UL
Day 57 Spike IgG	0.24	0.06, 0.56	0.32	0.09, 0.75	7.9	3.0
Day 57 RBD IgG	0.28	0.08, 0.62	0.38	0.11, 0.83	6.5	2.6
Day 57 PsV ID50	0.31	0.08, 0.72	0.42	0.11, 0.96	5.9	2.1
Day 57 PsV ID80	0.20	0.03, 0.51	0.27	0.05, 0.68	9.3	3.3
Day 29 Spike IgG	0.19	0.06, 0.40	0.26	0.08, 0.53	9.8	4.5
Day 29 RBD IgG	0.29	0.10, 0.59	0.38	0.13, 0.79	6.5	2.8
Day 29 PsV ID50	0.33	0.13, 0.65	0.44	0.17, 0.86	5.5	2.5
Day 29 PsV ID80	0.22	0.07, 0.46	0.30	0.10, 0.61	8.5	3.8

¹This analysis estimates the Controlled Risk Ratio under the no-unmeasured confounding and positivity assumptions.

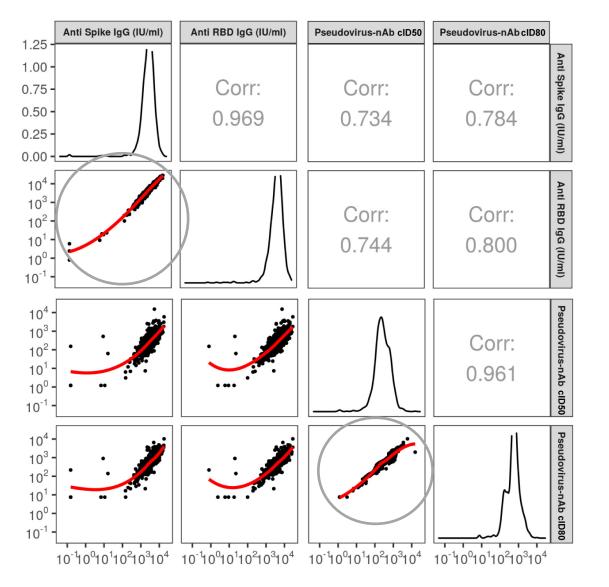
²Conservative (upper bound) estimate assuming unmeasured confounding at level RRUD(0, 1) = RREU(0, 1) = 2 and thus B(0, 1) = 4/3 (notation as in Ding and vanderWeele (2016)).

PsV Neutralization 50% Titer: Day 29 and Day 57


Two Lines of Investigation Into Immune Correlates

- 1. Correlates of Risk (CoR): How well do post-vaccination antibody markers predict COVID-19 occurrence?
 - Inference on statistical association parameters
- 2. Correlates of Protection (CoP): How well do post-vaccination antibody markers predict or cause vaccine efficacy (VE) against COVID-19?
 - Inference on causal effect parameters
- All analyses adjust for baseline prognostic factors in an effort to remove potential confounding
 - Baseline risk score built by superlearner of the placebo arm; communities of color; heightened atrisk

Pillars of Evidence for a Neutralizing Antibody Titer Immune Marker Surrogate Endpoint


- Meta-analysis of phase 3 VE trials¹
- Similar correlates results in other phase 3 trials or observational studies²
- Nonhuman primate vaccine challenge studies³
- VE is lower against variants that reduce vaccine-elicited neutralizing antibody titers
- Natural history re-infection correlates studies
 - E.g., Jessie Bloom et al. fishing vessel study
- Prevention efficacy of broadly neutralizing monoclonal antibodies

¹Oxford/AZ analyses by dose interval (Voysey et al., 2021, *Lancet*) Khoury et al. (2021, *Nat Med*), Earle et al. (2021, *Vaccine*) ²Feng, Voysey et al. (2021, *Nat Med*); Bergwerk et al. (2021, *NEJM*) ³Corbett, Nason, Seder et al. (2021, *Science*)

Correlations of Day 57 Antibody Markers in Per-Protocol Baseline Negative Vaccine Recipients

- High correlation of bAb Spike and bAb RBD responses (r=0.969)
- High correlation of nAb cID50 and cID80 responses (r=0.961)
- Article focused on reporting results for bAb Spike and cID50

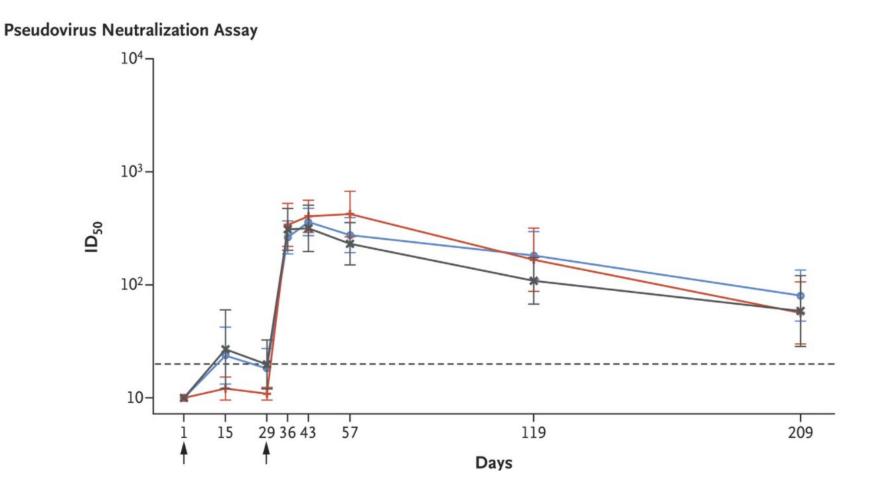
 Moderate-to-high correlation of bAb markers with nAb markers (0.734-0.800)

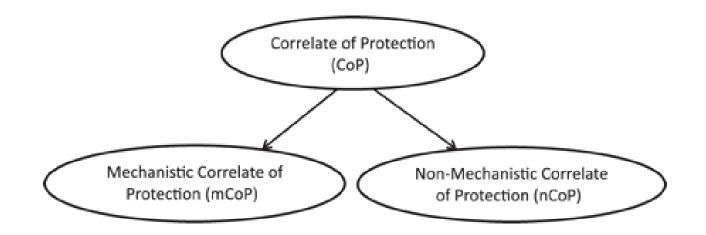
Serial Dilution for measurement

- Have an error prone scale that `reads` between 2 and 24 pounds
- Want to weigh water . . . but some buckets are >24 pounds

e	Estimate	Readout	Weight	Dilution
		>24	48	NEAT
		>24	24	1/2
	50.8	12.7	12	1/4
Average 46.3	43.2	5.4	6	1/8
	44.8	2.8	3	1/16
		<2	1.5	1/32
		<2	.75	1/64
		<2	.375	1/128

Wait, readout isn't in pounds


• Suppose readout is light intensity, but varies by day


True weight in pounds	Day 1 Iumens
20	2400
10	1200
5	600

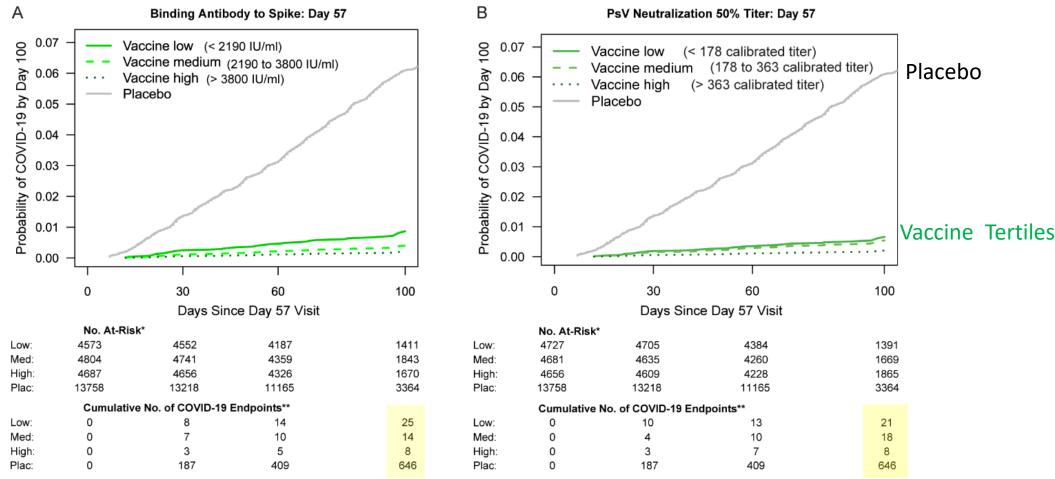
- Make 3 buckets: 20, 10, 5 pounds. Calibrate lumens to weight each day. Then measure that day's buckets
 - e.g. if a ¼ dilution reads 1200 lumens +/- 4 x 10 pounds = 40 pounds

mRNA-1273 Vaccine Antibody Over Time

Figure 1. A correlate of protection (CoP) may be either a mechanism of protection, mCoP, or a nonmechanism of ...

e.g. Circulating antibody blocks virus from infecting cells

e.g. Circulating antibody in lockstep with cellular responses that stop disease


Clin Infect Dis, Volume 54, Issue 11, 1 June 2012, Pages 1615–1617, https://doi.org/10.1093/cid/cis238

The content of this slide may be subject to copyright: please see the slide notes for details.

IOT3) (N=14134) 53.0) 7366 (52.1) 47.0) 6768 (47.9) 8- 95) 51.6 (18- 95) 58.3) 8189 (57.9) 16.5) 2367 (16.7) 25.2) 3578 (25.3) 19.8) 2789 (19.7) 79.3) 11212 (79.3) 0.9) 133 (1.0) (79.4) 11253 (79.6) (9.6) 1385 (9.8) 4.9) 620 (4.4)) 14828 (52.6) 13379 (47.4)) 51.6 (18-95) 16389 (58.1) 4691 (16.6) 7127 (25.3) 5569 (19.7)) 22377 (79.3) 261 (0.9)
47.0) 6768 (47.9) 8- 95) 51.6 (18- 95) 58.3) 8189 (57.9) 16.5) 2367 (16.7) 25.2) 3578 (25.3) 19.8) 2789 (19.7) 79.3) 11212 (79.3) 0.9) 133 (1.0) (79.4) 11253 (79.6) (9.6) 1385 (9.8) 4.9) 620 (4.4)) 13379 (47.4) 51.6 (18- 95) 16389 (58.1) 4691 (16.6) 7127 (25.3) 5569 (19.7) 22377 (79.3) 261 (0.9) 22427 (79.5) 2734 (9.7)
47.0) 6768 (47.9) 8- 95) 51.6 (18- 95) 58.3) 8189 (57.9) 16.5) 2367 (16.7) 25.2) 3578 (25.3) 19.8) 2789 (19.7) 79.3) 11212 (79.3) 0.9) 133 (1.0) (79.4) 11253 (79.6) (9.6) 1385 (9.8) 4.9) 620 (4.4)) 13379 (47.4) 51.6 (18- 95) 16389 (58.1) 4691 (16.6) 7127 (25.3) 5569 (19.7) 22377 (79.3) 261 (0.9) 22427 (79.5) 2734 (9.7)
8- 95) 51.6 (18- 95) 58.3) 8189 (57.9) 16.5) 2367 (16.7) 25.2) 3578 (25.3) (19.8) 2789 (19.7) 79.3) 11212 (79.3) 0.9) 133 (1.0) (79.4) 11253 (79.6) (9.6) 1385 (9.8) 4.9) 620 (4.4)	51.6 (18- 95) 16389 (58.1) 4691 (16.6) 7127 (25.3) 5569 (19.7) 22377 (79.3) 261 (0.9) 2734 (9.7)
58.3) 8189 (57.9) 16.5) 2367 (16.7) 25.2) 3578 (25.3) 19.8) 2789 (19.7) 79.3) 11212 (79.3) 0.9) 133 (1.0) (79.4) 11253 (79.6) (9.6) 1385 (9.8) 4.9) 620 (4.4)) 16389 (58.1)) 4691 (16.6)) 7127 (25.3)) 5569 (19.7)) 22377 (79.3) 261 (0.9)) 22427 (79.5) 2734 (9.7)
58.3) 8189 (57.9) 16.5) 2367 (16.7) 25.2) 3578 (25.3) 19.8) 2789 (19.7) 79.3) 11212 (79.3) 0.9) 133 (1.0) (79.4) 11253 (79.6) (9.6) 1385 (9.8) 4.9) 620 (4.4)) 16389 (58.1)) 4691 (16.6)) 7127 (25.3)) 5569 (19.7)) 22377 (79.3) 261 (0.9)) 22427 (79.5) 2734 (9.7)
16.5) 2367 (16.7) 25.2) 3578 (25.3) 19.8) 2789 (19.7) 79.3) 11212 (79.3) 0.9) 133 (1.0) (79.4) 11253 (79.6) (9.6) 1385 (9.8) 4.9) 620 (4.4)) 4691 (16.6)) 7127 (25.3)) 5569 (19.7)) 22377 (79.3) 261 (0.9)) 22427 (79.5) 2734 (9.7)
16.5) 2367 (16.7) 25.2) 3578 (25.3) 19.8) 2789 (19.7) 79.3) 11212 (79.3) 0.9) 133 (1.0) (79.4) 11253 (79.6) (9.6) 1385 (9.8) 4.9) 620 (4.4)) 4691 (16.6)) 7127 (25.3)) 5569 (19.7)) 22377 (79.3) 261 (0.9)) 22427 (79.5) 2734 (9.7)
25.2) 3578 (25.3) (19.8) 2789 (19.7) 79.3) 11212 (79.3) 0.9) 133 (1.0) (79.4) 11253 (79.6) (9.6) 1385 (9.8) 4.9) 620 (4.4)) 7127 (25.3) 5569 (19.7)) 22377 (79.3) 261 (0.9) 22427 (79.5) 2734 (9.7)
(19.8) 2789 (19.7) 79.3) 11212 (79.3) 0.9) 133 (1.0) (79.4) 11253 (79.6) (9.6) 1385 (9.8) 4.9) 620 (4.4)) 5569 (19.7)) 22377 (79.3) 261 (0.9)) 22427 (79.5) 2734 (9.7)
79.3) 11212 (79.3) 0.9) 133 (1.0) (79.4) 11253 (79.6) (9.6) 1385 (9.8) 4.9) 620 (4.4)) 22377 (79.3) 261 (0.9)) 22427 (79.5) 2734 (9.7)
79.3) 11212 (79.3) 0.9) 133 (1.0) (79.4) 11253 (79.6) (9.6) 1385 (9.8) 4.9) 620 (4.4)) 22377 (79.3) 261 (0.9)) 22427 (79.5) 2734 (9.7)
0.9 133 (1.0) (79.4) 11253 (79.6) (9.6) 1385 (9.8) 4.9) 620 (4.4)	261 (0.9)) 22427 (79.5) 2734 (9.7)
(79.4) 11253 (79.6) (9.6) 1385 (9.8) 4.9) 620 (4.4)) 22427 (79.5) 2734 (9.7)
(9.6) 1385 (9.8) (4.9) 620 (4.4)	2734 (9.7)
(9.6) 1385 (9.8) (4.9) 620 (4.4)	2734 (9.7)
(4.9) 620 (4.4)	
	1309 (4.6)
0.8) 108 (0.8)	219 (0.8)
0.2) 35 (0.2)	66 (0.2)
2.2) 295 (2.1)	602 (2.1)
2.1) 299 (2.1)	594 (2.1)
0.9) 139 (1.0)	256 (0.9)
(100) 14134 (100)) 28207 (100)
0	0
0	0
(100) 14134 (100)) 28207 (100)
0	0
0	0
(100) 14134 (100)) 28207 (100)
	0
0	0
4.9) 673 (4.8)	1361 (4.8)
	1405 (5.0)
	1892 (6.7)
	2709 (9.6)
	185(0.7)
	159 (0.6)
	() 29.28 (6.739)
	$\begin{array}{c ccccc} 0 & 0 \\ \hline 0 & 14134 & (100) \\ \hline 0 & 0 \\ \hline 0 & 0 \\ \hline 0 & 0 \\ \hline (4.9) & 673 & (4.8) \\ \hline (4.9) & 711 & (5.0) \\ \hline (6.7) & 956 & (6.8) \\ \hline (9.6) & 1364 & (9.7) \\ \hline 0.6) & 95(0.7) \\ \hline \end{array}$

Day 57 Marker Correlates of Risk: Cumulative Incidence by Tertiles

*No. At-Risk = estimated number in the population for analysis: baseline negative per-protocol vaccine recipients not experiencing the COVID-19 endpoint through 6 days post Day 57 visit. **Cumulative No. of COVID-19 Endpoints = estimated cumulative number of this cohort with a COVID-19 endpoint.

Proper Correlates of Protection

antibody	# Vaccinees	# Infections	Adjusted P(disease)*	Vaccine Efficacy	Naive Vaccine Efficacy
10	100	20	0.165	0.59	0.500
100	800	80	0.100	0.75	0.750
1000	100	5	0.070	0.83	0.875

Suppose: Placebo Group attack Rate 40% Predicted Vaccine Efficacy at Antibody = 10 is $100\% \times (1 - \frac{0.165}{0.40}) = 0.59$

*- Disease rate for a trial with equal young and old at each Ab level Like randomizing 1000 to vaccine and then 3 levels of antibody 1:8:1